3 research outputs found

    Space assets and technology for bushfire management

    Get PDF
    The financial, emotional, and ecological impacts of bushfires can be devastating. This report was prepared by the participants of the Southern Hemisphere Space Studies Program 2021 in response to the topic: “How space assets and technologies can be applied to better predict and mitigate bushfires and their impacts.” To effectively reach the diverse set of stakeholders impacted by bushfires, Communication was identified as a key enabler central to any examination of the topic. The three pillars “predict”, “mitigate” and “communicate” were identified to frame the task at hand. Combining the diverse skills and experience of the class participants with the interdisciplinary knowledge gained from the seminars, distinguished lectures, and workshops during the SHSSP21 program, conducted a literature review With specific reference to the 2019-20 Australian fire season, we looked at the current state of the art, key challenges, and how bushfires can be better predicted and mitigated in the future. Comparing this to the future desired state, we identified gaps for each of the three domains, and worked across teams to reach consensus on a list of recommendations. Several of these recommendations were derived independently by two or more of the three groups, highlighting the importance of a holistic and collaborative approach. The report details a number of recommendations arising from this Where applicable, we also aligned our discussion with the experience and lessons from other countries and agencies to consider,learn from and respond to the international context, as others develop systems using space technology to tackle similar wildfire issues

    DELLA activity is required for successful pollen development in the Columbia ecotype of Arabidopsis.

    Get PDF
    Excessive gibberellin (GA) signalling, mediated through the DELLA proteins, has a negative impact on plant fertility. Loss of DELLA activity in the monocot rice (Oryza sativa) causes complete male sterility, but not in the dicot model Arabidopsis (Arabidopsis thaliana) ecotype Landsberg erecta (Ler), in which DELLA function has been studied most extensively, leading to the assumption that DELLA activity is not essential for Arabidopsis pollen development. A novel DELLA fertility phenotype was identified in the Columbia (Col-0) ecotype that necessitates re-evaluation of the general conclusions drawn from Ler. Fertility phenotypes were compared between the Col-0 and Ler ecotypes under conditions of chemical and genetic GA overdose, including mutants in both ecotypes lacking the DELLA paralogues REPRESSOR OF ga1-3 (RGA) and GA INSENSITIVE (GAI). Ler displays a less severe fertility phenotype than Col-0 under GA treatment. Col-0 rga gai mutants, in contrast with the equivalent Ler phenotype, were entirely male sterile, caused by post-meiotic defects in pollen development, which were rescued by the reintroduction of DELLA into either the tapetum or developing pollen. We conclude that DELLA activity is essential for Arabidopsis pollen development. Differences between the fertility responses of Col-0 and Ler might be caused by differences in downstream signalling pathways or altered DELLA expression
    corecore